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Representations of 3D data
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Gaussian Mixture Models for 3D Shapes
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GMM fit to object surface

Benefits
• Closed-form expression
• Can represent contiguous surfaces
• Easy to build from noisy data
• Sparse



Gaussian Mixture Model (GMM)
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Gaussian Mixtures as a shape representation

W. Tabib, C. O’Meadhra, N. Michael
IEEE R-AL (2018)

B. Eckart, K. Kim, A. Troccoli, A. Kelly, J. Kautz. 
CVPR (2016)

B. Eckart, K. Kim, J. Kautz. 
ECCV (2018)
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Fitting a Gaussian Mixture Model

1. Obtain 3D Point Cloud
2. Select Initial Parameters
3. Iterate Expectation & Maximization

i. E-Step: Each point gets a likelihood
ii. M-Step: Each mixture gets parameters
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The E-Step (Given GMM parameters)
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The M-Step (Given point-mixture weights)
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To get new parameters: takes derivatives, set equal to zero, and solve
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Geometric Objects in a Probability Distribution
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Known curve in a given 2D probability distribution



Geometric Objects in a Probability Distribution
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Consider sampling N points from this curve
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Geometric Objects in a Probability Distribution
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Take a geometric mean to account for sample number
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Geometric Objects in a Probability Distribution
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The curve will be the value in the limit
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Geometric Objects in a Probability Distribution
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Geometric Objects in a Probability Distribution

16

!= exp & log(+(,)) .,

1. If +(,) = 0 on curve, then L= 0
2. Invariant to reparameterization 
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The E-Step (Given GMM parameters)
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The New E-Step (Given GMM parameters)
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The M-Step (Given point-mixture weights)
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The New M-Step (Given point-mixture weights)
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What is Σ"? 
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Results
Did all that math actually help us fit better/faster GMMs?

24



25

Using different inputs

classic algorithm
• Vertices of the mesh
• Triangle centroids

our method
• Approximate (E only)
• Exact (E + M steps)

Measure the likelihood 
of a high-density point 
cloud (higher is better)

Evaluate across a wide 
range of mixtures
(6 to 300) 



Full E+M method works in all cases
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Stable under even random initialization!
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Applications
Are these models actually more useful?
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Mesh Registration (P2D)

Method
1. Apply a random rotation + translation to the point cloud
2. Find transformation to maximize the likelihood of the points

• Perform P2D with GMMs fit to
i. mesh vertices
ii. mesh triangles
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Eckart, Kim, Kautz. 
“HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration.” 
ECCV (2018)



Mesh-based GMMs are more accurate
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Across multiple models
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Frame Registration (D2D)

Method
1. Use a sequence from an RGBD Sensor

• 2,500 frame TUM sequence from a Microsoft Kinect

2. Pairwise registration between t & t-1 frames
• Optimize the D2D L2 distance
• Build GMMs using square pixels as the geometric object
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W. Tabib, C. O’Meadhra, N. Michael.
“On-Manifold GMM Registration” 
IEEE R-AL (2018)



Representing points using pixel squares
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D2D Registration Results
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Compared to standard GMM
• 2.4% improvement in RMSE
• 22% faster D2D convergence  



Questions?
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The End!
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Extra Slides
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How to fit a Gaussian Mixture Model?

1. Obtain any collection of objects
2. Perform Expectation + Maximization

i. E-Step: Each point gets a likelihood
ii. M-Step: Each mixture gets new parameters
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Extension to arbitrary primitives

39Vasconcelos, Lippman. "Learning mixture hierarchies.” 
Advances in Neural Information Processing Systems (1999)



Approximation
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area-weighted geometric mean using the primitive’s centroids



Product Integral Formulation

• Product integrals provide a resampling-invariant loss function
• Given S samples, of M primitives, with N mixture components

• This can be evaluated in the limit of samples (with a geometric mean) 
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For GMMs we will use the lower bound
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P2D Registration Results
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Model Rotation Error
(% of ICP)

Translation Error
(% of ICP)

points mesh points mesh
Armadillo 127 37 161 33
Bunny 50 28 41 17
Dragon 68 25 40 19
Happy 101 27 85 27
Lucy 95 23 122 35



Mesh Registration with P2D

Method
1. Apply a random rotation + translation to the point cloud
2. Point-to-Distribution (P2D) registration of point cloud to GMM

• Perform tests with GMMs fit to
i. mesh vertices
ii. mesh triangles

• Optimize the GMM likelihood with rigid body transformation (q & t)
• BFGS Optimization using numerical gradients, starting from identity
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Eckart, Kim, Kautz. 
“HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration.” 
ECCV (2018)
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Representing points using pixel squares
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