
3D Shape Classification
Comparing Volume CNNs & Image CNNs for Shape Prediction
Leonid Keselman

Example Embeddings

Example DataIntroduction

Related Work

Methods

Challenges and Next Steps

Tested CNN Architectures & Results

Image Convolution + Embedding
Fine-tuning an embedding layer into an ImageNet-trained

classifier. Implemented in Caffe. To utilized an ImageNet

trained classifier, we must use an embedding from 2D to 3D.

Two architectures were tested and shown to be sucessful for

2D to 3D embedding.

Volumetric Convolution
Straightforward mapping of a shallow convolutional neural

network to 3D data. Implemented in Torch. Guidance on

sizes and dimensions was given by Hao Su and Charles

Qi.

Mesh

30 x 30 x 30
Occupancy
Volumes

We focuses on ShapeNet, a recently released dataset that

includes 3D CAD models of forty different object categories,

dubbed ModelNet40. We implement 3D convolutional neural

networks operating directly on these volumes, as well as 2D

convolutional networks operating on a learned embedded

from the 3D model.

Previously published results suggest that 2D-based CNNs may

perform better on ModelNet40. Specifically, the current leader

on the dataset uses pre-trained 2D CNNs on multiple rendered

views of the models. Similarly, it’s been shown that even a

single, cylindrical rendering of a mesh, run through a 2D CNN

can outperform the initially published 3D CNN results.

Architecture Convolutions Pretrain

Top 1

Accuracy

MVCNN [3] 2D ImageNet 90.1%

VoxNet [2] 3D None 83.0%

DeepPano [4] 2D 77.6%

3DShapeNets [1] 3D None 77.0%

[1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao. 3D

ShapeNets: A Deep Representation for Volumetric Shapes. CVPR2015.

[2] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural Network for

Real-Time Object Recognition. IROS2015.

[3] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional

Neural Networks for 3D Shape Recognition. ICCV2015.

[4] B Shi, S Bai, Z Zhou, X Bai. DeepPano: Deep Panoramic Representation for 3-

D Shape Recognition. Signal Processing Letters 2015.

Fine-Tuned AlexNet,

FC1024 embedding • Better Embedding Architectures: Currently we’ve tested a straightforward

set of embedding architectures, including full-connected layers and

deconvolutional layers. However, deeper networks or other possible topologies

may operate better.

• Fine-tune additional layers: Currently these results come from a single pass

training operation where the image convolutional network is held locked while

the top classifier labels and embedding network are trained.

• Different data formats: These are simple occupancy voxel grids, perhaps

using something more sophisticated, like a signed distance field, would yield

better results.

• Completing the loop and using real 3D data: Comparing 3D data from a

single viewpoint (like a depth camera) or learning a 3D embedding from 2D

data, to do shape classification from images, based only on model annotations.

VGG + Upsampling

Embeddings

Deconvolution-based embedding. First the input volume is convolved

with kernels of sized 1x1x30, 1x30x1, 30x1x1, down each cardinal axis.

Then they pass through a bank of convolutions to learn a non-linear

transform. They are then concatenated, collapsed into 3 channels,

upsampled, and trimmed with an appropriately sized kernel. All

convolutions are 3x3.

224

224

3

240

240

3
30

30

3

30

30

48

30

30

30 30

30

16

30

30

16

Fully connected embedding. The 30x30x30 volume is first mapped into a

1024 dimensional embedding layer, before being mapped to a 227x227

sized monochromatic image, and them duplicated across all three color

channels.

30

30

30
227

227

1

227

227

3

1024

40 classes

Fully Connected. 1200 Dimensions

Fully Connected. 2048 Dimensions

30

30

30

48 filters,

6x6

Stride 2

160 filters,

5x5

Stride 2

512 filters,

4x4

Stride 1

Volumetric Convolution
• Vanilla Model: No dropout, using SGD with momentum, 8 epochs. 83.8%

• Vanilla Model: No dropout, using Adam, 8 epochs, 82.2% (faster

convergence)

• Dropout Model: Dropout varying from 0.8 to 0.5 retention, using SGD, 8

epochs, 84.6%

• Pool + 3x3 Model: Replace first convolution layer with 3x3 convolutions

followed by 3x3 max pooling, dropout at FC layers, SGD. 8 epochs, 85.7%

• Pool + 3x3 Model: Use Nestrov SGD instead, 86.7%

Image Convolution + Embedding
• Fully Connected Embedding + CaffeNet: 66.5%

• Fully Connected + NetworkInNetwork: 63.0%

• Fully Connected + GoogleNet: 57.0%

• Fully Connected + VGG: Lost the protofile!

• Fully Connected + 3 sets of 1x1 convolution + Single Channel,

reducing the number of parameters and making it a 900 dimensional

hidden state: 67.3%

• Fully Connected Embedding + 1x1 Conv + Single Channel + Locking

entire original network: By locking the additional convolutional layers, I

was able to get an even better result, at 75.6%

• Fully Connected Embedding + 1x1 Conv + Single Channel + Locking

entire original network: Reducing the data to only use a single view

dropped it all the way down to 63%

• Fully Connected Embedding + 1x1 Conv + Single Channel + train from

scratch: Training the same network as two above, but without initializing to

• ImageNet learned weights gives only 64% performance.

• Deconvolutional Embedding + VGG-16: 78.0%

• Deconvolutional Embedding + VGG-16 + fine-tune: 83.5%

• ResNet50 + deconvolution embedding: 50%

• GoogleNet + deconv embedding: 31%

• VGG-16 + deconv + xavier init for deconv: 0.025%.

