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Abstract

We introduce the use of various projection functions in

the analysis of stereoscopic depth sensors. Through these

methods, we are able to design stereo systems which are not

bound by traditional quadratic depth error. Additionally, we

demonstrate how existing correspondence algorithms can

be modified to handle these lens designs. In addition, we

can construct lens projection models which are more suited

to natural lens designs, and build stereo systems with min-

imal re-sampling errors. This also allows us to construct

wide-angler stereoscopic systems than previously possible,

without significant re-sampling or sacrificing accuracy.

1. Introduction

Stereoscopic correspondence methods are at the heart of

many practical depth sensors. This is because they’re prac-

tical and simple to build, requiring only a rigid baseline and

two sensors. Their use is widespread, from dental tooth

scanners, to consumer electronics and advanced driver as-

sist systems [7].

All of these systems, to the best of our knowledge, are

built on an assumption that the lens used is a rectilinear

lens. Rectilinear lenses create a projection model like that

of a pinhole camera; characteristic of such a lens is that

straight lines are always straight. This maps to humans own

physical perception of the world. This is also known as per-

spective projection, and we will discuss some of its short-

comings, as applied to stereo, in this paper. The goal of this

paper is to ask and analyze a simple question, if one could

design any lens system possible, how could you fully utilize

it and what would the impact be?

1.1. Stereoscopic depth systems

To generate valid stereo correspondence, we must first

setup epipolar geometry. In this paper, we will use the con-

vention of mapping the epipole at infinity, with the epipolar

lines parallel to the horizontal axis of the imagers. While

Figure 1. Two dimensional overview of our coordinate system.

The field-of-view of each camera is identical and equal to θ. The

spacing between the cameras, or baseline, is B. The projection

function of the system is that which maps a 3D point (X,Y,Z) to a

position on the sensor (using U and V as coordinate values)

exist methods exist for searching along other configurations

of epipolar geometry, this paper will not explore them. Ad-

ditionally, we assume that both camera use the same exactly

lens model.

Additionally, the creation of valid depth correspondence

requires that a lens projection equation be fully captured.

this is because real lenses typically have some non-designed

distortions. This is true for traditional rectilinear lenses,

fisheye lenses, and likely any of the other lens models pre-

sented here. This distortion from a non-ideal lens is first

captured and corrected for in a lens distortion step, before

the lens intrinsics are estimated. While this is sometimes



a two-step process, many modern implementations [4] esti-

mate both distortion parameters and the camera matrix si-

multaneously through the use of a Levenberg–Marquardt

solver. This process, of capturing the full camera projec-

tion model, is required to create a consistent and known

mapping from correspondences on the image plane to cor-

respondences in the real world. And holds for all lens mod-

els presented here, although the camera model solver would

have to be modified accordingly.

The model of projection most often used is that of a

rectilinear lens, with a Brown-Conrady distortion model.

While our paper discusses other lenses, the existing meth-

ods [24, 4] of using nonlinear optimization to capture a real

lens distortion model can be trivially augmented to handle

our proposed mechanisms and methods. For a general in-

troduction to the basic geometries and methods, we recom-

mend Szeliki’s book [21].

1.2. Lens Projections

This work proposes that lenses are analyzed strictly with

their projection models. This allows us to perform straight-

forward analysis of the stereoscopic depth errors, along with

building algorithms that perform directly depth matching

directly on the projected images. Typical optical literature

characterizes lenses via an angular specification, while this

analysis is easier in Cartesian coordinates. A summary ta-

ble of some common projections and their characteristics

is available in table 1. A straightforward discussion of the

benefits and types of common lens projections is readily

available [3], from where the angular forms of these pro-

jections is obtained. The Cartesian forms were derived for

the table on page 3.

1.2.1 Rectilinear lenses

A traditional lens is based on the pinhole model of light.

It’s the projection that would be given with a pinhole lens.

It is also know as rectilinear or perspective projection. It’s

use is common because it preserves straight lines remain-

ing straight. Additionally, it’s sampling is constant across a

plane positioned in front of the camera, allowing a constant

sized window to across the entire frame, as

x =
1

f
· u · z

u = f · x
z

∂u

∂x
=

f

z

This is easy to see, as changes in real world position (x),

have no dependence on position in the frame (u), only on

the distance of the object and the focal length of the lens.

Hence, for fronto-parallel objects, a constant sized window

Figure 2. A figure taken from [3], showing the behavior of various

lens projection types when given a fixed focal length.

would provide consistent matching over the entire frame,

provided the focal lengths and distances of the images are

matched. However, as described below, it has some very

natural shortcomings.

1.2.2 Shortcomings of traditional lenses

Building very wide angle lenses is impractical under pin-

hole projection. This is for two reasons: first, the number

of pixels required for any object grows as tan(θ), where

θ is the off-axis angle of the optical ray. This trends

to infinity as pinhole imagers try to cover a hemisphere

(180 degrees)1. Second, due to the physical properties of

such a sampling function, there is strong natural vignetting.

Specifically, perspective projection imagers exhibit cos4(θ)
[2] light loss. In fact, this rule of thumb is often an under-

estimate due to the transmission properties of the optics in-

volved; for details, see the cited paper.

1.2.3 Fish-eye Lenses

The common alternative lens model to perspective projec-

tion is a fish-eye projection. These have recently taken off

for use in security, automotive, and consumer use. Unfor-

tunately, this is a catch-all term for a variety of different

lens projection models. We pick two to analyze here, the

1Rectilinear lenses project as u = tan(θ) which naturally has x → ∞

as θ →
π
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Projection Angular Formula Cartesian Formula Comments

Rectilinear u = f · tan(θ) u = f · x
z

Also known as perspective or pinhole projection

f-θ u = f · θ u = f · tan(x
z
) A common type of fish-eye projection, also

known as equidistant projection

Orthographic u = f · sin(θ) u = f · x
√

x2+z2
A somewhat rarer type of fish-eye projection, but

one that exhibits no natural vignetting.

Cubic u = f · tan(θ)3 u = f · (x
z
)3 A lens model that has no practical examples that

we know of, but has interesting theoretical prop-

erties described below.

Table 1. A table of the lens projections used in paper and their various forms

Figure 3. A picture of a real anamorphic lens with an oval aper-

ture. On the right there is a demonstration of the stretching effect

exhibited by the lens. These images and further information is

available [22]

f-θ model and the orthographic model, which are both in

common use. Additional information about the variations

of fish-eye projection is available in [3], and their diagram

is repeated in figure 2.

1.3. Anamorphic Lenses

Another interesting property of lens projections is that

lenses often use spherical lens components, which create

circular projections, and can be characterized by the off-axis

angle of interest. While this simplifies lens design, there ex-

ist alternative lenses called anamorphic lenses [11]. These

lenses have asymmetric behavior, typically stretching the

image down only a single axis, while leaving the other axis

undisturbed. This is used in the film industry to fit wide as-

pect ratio images onto a more square 35mm film. They’re

commonly used in cinema for these reasons and are readily

available for purchase. This can be seen in figure 3.

2. Related Work

In some ways, this work is motivated by Fleck’s article

on the use of various lens projections in computer vision [5].

Although her work didn’t focus on stereo systems, it dis-

cussed the concept that rectilinear projections have notable

shortcomings for certain computer vision applications.

There have been many existing methods on expanding

stereoscopic correspondence algorithms to handle non ideal

lenses. Many authors build on wide angle lenses, distorting

the imagers back to a linear projection for stereo matching

[8] [6]. Other authors [18] [12] have pursued using fish

eye lenses, which are a form of nonlinear lens, but did so

mostly through the use of features which were invariant un-

der their chosen lens projection. The shortcomings of us-

ing such invariant features are that these methods produced

sparse depth maps.

Abraham and Förstner developed a method setting up

valid epipolar geometry for using panoramic and wide an-

gle lenses [1]. They analyze various model properties and

generate a constraint under which epipoles at infinity can be

preserved. However, while their work would correctly dis-

cover nonlinear lens distortion, they do not explore dense

matching on their images. Without the restriction of recti-

linear sampling down the matching axis, their model does

not allow for use of standard correlation algorithms, instead

requiring resampling at every disparity candidate. However,

Roy et al. demonstrate the value of a cylindrical model like

that proposed here [16]. However, they do not analyze its

properties, use dense matching algorithms on such models,

nor do they apply their model to anything but synthetic data.

Li [14] [15] developed methods of using nonlinear lens

for generating depth, including calibration and search, but

the method only applied to only spherical projections. Ad-

ditionally, their use of nonlinearities was limited to only the

axis perpendicular to the epipolar line.

However, since almost all of these methods undistort

back to a rectilinear projection, there is no analysis of how

to utilize and design lens projection geometries that provide

favorable properties for stereoscopic imagers — including

improved depth invariance at the expense non-uniform ac-

curacy across the image.



3. Model for Lens Projections

3.1. Stereoscopic System

To setup the principles of a matching stereo system, we

define the coordinate system defined in 1. There is a base-

line, a focal length, and a projection function from the real

world to the image.

When discussing various projection geometries, there is

first a choice of parametrization. For an overview of vari-

ous parametrization and models, please see [19]. While op-

tics papers general prefer an angular parametrization (where

fish-eye lenses are modeled as as f-θ lenses, with a linear

mapping between angle and sensor position), computer vi-

sion literature typically prefers a parametrization of Carte-

sian coordinates. While we’ve explored both parametriza-

tion, we’ve found that the Cartesian (on image plane) sam-

pling of of stereoscopic correspondence makes the Carte-

sian parametrization significantly simpler. For an example

of various projection functions in both forms, see figure 1.

3.2. Stereo geometry with projection functions

To parametrize the equations of accuracy and correspon-

dence, we can setup a general equation to define stereo-

scopic correspondence between two imagers as follows

x(u) = x(u− d) +B (1)

where x(u) is the projection function from the imager co-

ordinate (u) to the real world (x), z is the distance from the

plane of the imagers, B is the baseline, and d is the dispar-

ity. This is a two-dimensional parametrization, where the

axis perpendicular to the epipolar lines is ignored. With this

equation and the projection forms in table 1, it’s easy to de-

rive various properties of the stereo system, such as depth

error, and mapping from disparity to depth.

3.3. Rectilinear Lens Derivation

For a traditional rectilinear projection, we’d see

x(u) =
1

f
· u · z (2)

where f is the effective focal length. This equation can then

be solved to generate the relationship between disparity and

depth

1

f
· u · z =

1

f
· (u− d) · z +B

u = (u− d) +
Bf

z

z =
f ·B
d

(3)

Additionally, we can take the derivative, ∂z
∂d

, and substitute

in our relationship between z and d to generate an error rela-

tionship. Traditionally we take the error relative to a single

pixel disparity error (∂d = 1).

z =
f ·B
d

∂z

∂d
= −f ·B

d2
· ∂d

∂z

∂d
= − f ·B

( f ·B
z
)2

· ∂d

∂z

∂d
= − z2

f ·B
· ∂d (4)

3.4. Fish­eye Lens Derivation

The derivations in the rectilinear section can be repeated

to generate results for stereoscopic depth systems with fish-

eye lenses. The result for typical f-θ lenses is straight-

forward, although it’s very complicated for orthographic

lenses. However, both types of fish-eyes exhibit much less

vignetting than rectilinear lenses and support imaging an

entire hemisphere, so they’re both adequate to address our

issues with rectilinear lenses. Results are in table 2.

3.5. Cubic Lens Derivation

In the scope of this project, we also explored a variety

of other lens projection functions, to see if we can solve an

interesting issue in stereoscopic depth systems, their depth

error function. Namely, in a traditional rectilinear system,

depth error is quadratic with distance, as seen in equation

4. We looked for optics which used extreme distortion to

counteract these properties. In our exploration, we found

one, namely cubic projections. These create extremely bar-

rel distorted images in the center of the image, but their

depth error is

∂z

∂d
= − 3z2

Bf3

(

Bf3

z
− u3

)

2

3

∂d

If we simplify the expression, by removing the dependence

on the focal length and baseline, which work in tandem to

set a coefficient of proportionality, we can better see that the

errors are

∂z

∂d
∝

{

z
4

3 , if Bf
z

≫ u3

z2 · u2, if u3 ≫ Bf
z

(5)

What this means is that for the center of the image, when u

is small, we have sub quadratic depth error. Outside that, we

have traditional quadratic depth error, which grows quadrat-

ically worse towards the edges. To the best of our knowl-

edge, this is the first known result of a stereo system getting

sub-quadratic depth error, even in theory.



Equation World-to-Image Image-to-World Depth Depth Error

Rectilinear u = f · tan(θ) z u
f

Bf
d

− z2

Bf

fθ u = f · θ z tan
(

u
f

)

B

tan (u
f )+tan ( 1

f
(d−u))

− 1
Bf

(

z2 +
(

B − z tan
(

u
f

))2
)

Cubic u = (f · tan(θ)) 1

3 z u3

f3

Bf3

u3+(d−u)3
− 3z2

Bf3

(

Bf3

z
− u3

)
2

3

Orthographic u = f · sin(θ) z u√
f2−u2

Omitted Omitted

Table 2. Comparison of various projection functions. Due to the fact that spatial accuracy and depth depend on the derivatives of the

projection function, the rectilinear projection is the only one with a constant derivative, and hence the only one with no dependence on

where on the imager projection is taking place. These results were all verified using a computer algebra system [20]. The orthographic

results are very challenging to derive as they’re not defined everywhere, and the results are omitted for clarity, although the included script

can provide the results.

Figure 4. A simulation of the depth errors at given distances with a

rectilinear lens, a fish-eye lens, and a cubic lens. The sub-quadratic

performance of the cubic imager can be seen, along with the posi-

tion invariance of the rectilinear lens.

3.6. Conclusion: Projections of Interest

Of these various lens projections, there are two promis-

ing ones. First, the cubic lens projection is interesting be-

cause of it’s guarantee of superior depth accuracy in the

middle of the image. However, as results in the next sec-

tion show, these lenses require extreme magnification in the

middle of the frame, and may not be feasible to build Sec-

ond, it seems that there are minimal accuracy advantages to

using other lens projection. This is demonstrated in figure 4.

This suggests that the reasons to use a different lens should

come only from the angle-of-view and noise benefits, and

not for any accuracy reason.

4. Simulation Results

In general, we will demonstrate the results of this work

on anamorphic frames, with non-rectilinear distortion down

only one axes. The methods for dealing with each case sep-

arately can then be combined for results that work for sym-

metric lenses. Constraining distortion to one axis allows for

a simplification of the analysis. We will briefly discuss what

it means to put the anamorphic axis in either direction.

When the axis of nonlinear distortion is perpendicular to

the epipolar line, there is no change in the projection func-

tion as defined earlier. This allows for predictable depth

accuracy. However, it requires that we change traditional

matching algorithms to search along a curved line instead

of down a scan-line. We also need to take care to use the

correct projection function when projecting a stereo dispar-

ity into a real-world coordinate (using the inverse of the

projection equation chosen). While this causes variation in

spatial resolution of image lens across the image, it is one

simply way to create wide-angle stereo imagers. By mount-

ing anamorphic lenses to both cameras, perpendicular to the

epipolar line, we can create wide-angle stereoscopic sys-

tems which don’t suffer from heavy vignetting or perspec-

tive distortion. The limitation of this method is that the re-

sulting images have very asymmetric aspect ratios (being

much ”taller” than ”wide”).

When the axis of nonlinear distortion is parallel to the

epipolar line, this affects the accuracy and matching algo-

rithms required to generate stereoscopic depth. Matching

algorithms then need to be modified to use variable sized

windows. Additionally, algorithms must use the correction

functions in table 2 to map back to consistent disparities.

4.1. Data source and algorithms

For this set of simulation, we will simply distort high-

resolution stereo images from a a standard dataset [17].

This allows us to have a ground truth and use the ex-

tra resolution from the image to compute arbitrary sam-

pling functions. In addition, we implemented basic stereo-

scopic correspondence algorithms with sub-pixel resolution

from scratch. Most of the results are with sum-of-absolute-

differences block matching, but we also tried Sobel + BM

[13] and Census [23]. These latter algorithms are impor-

tant as they’re robust to noise and can be used to validate

the best-case impact of photon noise. Additionally, we im-

plement a standard left-right check [10] to remove noisy

matches. All algorithms were implemented in C++, with

the use of no external libraries (except for image loading),

and tested on both Windows and Linux.

The modification of the algorithms is fairly straightfor-

ward. The easiest method is simply to adjust the location of
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Figure 5. Example results for cubic anamorphic lenses from the

Middlebury stereo dataset [17]. These images were distorted at the

same time they were sub-sampled, to produce comparable results.

The first row are left images from left/right pairs, while the mid-

dle row is results from an implemented depth matching algorithm.

The last row are ground truth results.

searches based on where they’d be if the image were recti-

linear. This can be done with equations from table 1. With

the anamorphic assumption, this means that images from X

(or horizontal) (or parallel to epipolar lines) distorted im-

ages require widening and shrinking the window. In our

case, we simply use a fixed sized window on the smaller of

the two windows and sampled the larger window according

to the difference in projected patch sizes between the two u

coordinates. For the vertical anamorphic distortion, one can

change the window to keep consistent sampling, but keep-

ing a fixed sized window for the whole image is acceptable

in practice. We always used a fixed disparity search size for

all the images.

4.2. Cubic Lens Performance

In our simulation of cubic lenses, we tried both anamor-

phic distortions in the horizontal and vertical axis. An ex-

ample input image, the depth output, and the ground truth

depth are seen in figure 5. As described earlier, the result-

ing algorithm causes a loss of data in he middle of the X

anamorphic image. This is due both to the limited algorithm

search window, and the fact that cubic distortion requires a

huge magnification in the middle of the image (200 pixel

wide image requires 30x more magnification in the center

than the corresponding rectilinear) means that the dataset

doesn’t have any texture and the stereo algorithm fails. This

math comes from the projection function gradient, where

a rectilinear camera is constant, while a cubic camera is

∇u ∝ 3 ∗ x2.

The vertical anamorphic results work fine, but don’t give

the interesting depth properties that were discovered in the

Orthographic 

horizontal 

anamophic 

Orthographic 

vertical 

anamophic 

Rectilinear 

Left Image Computed Depth 

Figure 6. Example results for orthographic anamorphic lenses

from the Middlebury stereo dataset [17]. These images were dis-

torted at the same time they were sub-sampled, to produce compa-

rable results.

analysis.

4.3. Orthographic Lens Performance

Since the cubic projection results were theoretically in-

teresting, but the images were so extreme that it became

obvious such lenses would be challenging to build, we de-

cided to shift our focus to a more traditional projection func-

tion, the orthographic projection. Such lenses are interest-

ing, practical to build [3] (e.g. Nikor 10mm f/5.6 OP), and

exhibit no vignetting. That means, if such lenses can be

used for stereo, they’d have better SNR performance due

to less photon noise in the corners of the image. Our al-

gorithms were validated on such images. The results are

shown in figure 6. One caveat to this method is that

4.4. Proposal for a hardware system

The basic next steps for this component of the project

would be to actually build a stereo system with either a rec-

tilinear anamorphic lens, which are commonly available on

the internet. Or build a stereo matching system with an or-

thographic fish-eye camera. Both would demonstrate the

high fidelity results of a wide angle stereo depth system

without any vignetting loss or a requirement for an infinite

number of pixels (as would be needed in the traditional rec-

tilinear lens case).



5. Synthetic stereoscopic matching

In order to further validate the contributions of these var-

ious lens models, we implemented a customized version of

the tungsten C++ path-tracer which could handle arbitrary

anamorphic projection functions. We used the well-known

Sponza scene as our example data.

5.1. Synthetic GoPro Data

To select a camera design for these synthetic results, we

decided to try and match the well-known cameras from Go-

Pro. Specifically, we used a fish-eye lens, with an f-θ pro-

jection, and a horizontal field of view of 120 degrees. Our

images were 2:1 aspect ratio (instead of the typical 1.7:1),

and can be seen as slightly cropped versions of the images

one would get from a GoPro.

5.2. Rectilinear Depth

As a baseline for these synthetic results, we also included

a rectilinear projection with the same field of view and po-

sition. To better simulate the impact of a real f-theta lens,

we also added synthetic vignetting to the rectilinear lens in

order to account for its light loss properties. The model for

vignetting was cos(θ)4 [2], while our model for noise com-

ing from vignetting was simply assuming photon noise [9].

We assumed 5,000 electron capacity wells and sampled the

appropriate Poisson distribution at each location to emulate

the noise.

5.3. Anamorphic Depth

Figure 7 includes an example of these results. It is vis-

ible that our proposed matching algorithms perform stereo

matching correctly on these synthetic anamorphic picture,

with little to no loss of performance. Although there’s some

variation in performance across the projections (due to hav-

ing different image content), it’s clear that the proposed

methods provide comparable or better performance than a

rectilinear projection, if real vignetting (+ photon noise) is

taken into account, even using a robust matching function

like Census [23] isn’t enough to overcome the noise issues

introduced. Our quantitative table of performance, normal-

ized to the results of a rectilinear lens (without vignetting),

is shown in figure 8.

We had originally planned to report the depth errors re-

sulting from using a rectilinear un-distortion model instead

of an anamorphic one. However, we found our generated

datasets (which take 4 hours to render all example images)

had scaled depth values which made it impossible to com-

pute mean squared error or any other depth-based error met-

ric. There was simply not enough time to fix the error in the

tungsten renderer, regenerate these datasets, and compute

depth-based error metrics. However, it is planned future

work.

Rectilinear 

Rectilinear 

+ vignetting 

fθ horizontal 

anamorphic  

fθ vertical 

anamorphic  

Left Image Depth estimate 

Figure 7. Example results for f-θ anamorphic lenses. The example

scene is the commonly used Dubrovnik Sponza scene used in the

graphics community. The renders were generated from a custom

version of the Tungsten C++ ray-tracer.

Despite that, these results suggest that anamorphic soft-

ware undistortion models would minimize resampling and

make it easier to build stereo depth systems with fish-eye

lenses.

6. Conclusions

We have demonstrated and derived a generalized form

of stereoscopic correspondence, along the requisite general-

ized sampling algorithm for modifying existing algorithms.

Additionally, we have shown synthetic renders supporting

our mathematical conclusions, and demonstrated the intu-

ition behind desiring non-linear lenses. This should open

the path to making wide angle stereoscopic systems that nat-

urally use the depth accuracy properties of the wide angle

lenses they’re designed with, instead of being distorted into

rectilinear projections.

Of equal interest, we’ve shown that stereoscopic systems

with properly designed optics are not limited to quadratic

depth error, and instead have be built with a desired trade-

off between spatial and depth invariant accuracy. This in-

teresting mathematical and synthetic result paves the way

for many interesting new stereoscopic systems. We’d like

to pursue implementing a practical version of this concepts

on top of consumer wide-angle cameras, to the aim of better

computational efficiency and accuracy.

https://github.com/tunabrain/tungsten
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Figure 8. Accuracy results. Quantitative results from figure 7.

The fThetaX and fThetaY examples are anamorphic distortions

(fθ) along a single axis. The metric is simply density of data after

passing a standard left-right check [10]. Values are normalized to

the scores from a rectilinear projection. There are two stereo cost

correlation functions, a standard sum of absolute differences and

Census [23]. The results from the proposed anamorphic methods

are better than those from Rectilinear stereo, when realistic noise

is taken into account.

7. Next Steps

We plan to validate these theoretical and synthetic results
with real optics. We’d like to build stereo systems with ac-
tual anamorphic lenses to show the benefit of a new optical
distortion model. In additional, we can use these results
with traditional spherical lenses, in the form of an anamor-
phic computational model to minimize re-sampling, while
continuing to use traditional correlation algorithms. This
should make stereo systems with cameras like GoPros more
efficient and practical.
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