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Abstract—We present dice stacking as a highly dynamic, task
that can serve as a model problem for robotic manipulation. While
a seemingly simple human manipulation task, containing only
a few rigid-body objects, it is shown to be rather challenging
for standard algorithms in robotics. We believe this is due to
the need to maintain high velocity while undergoing regular
collisions. We have designed a simulator to model this task. Our
simulator produces plausible behavior, and includes multiple user
input mechanisms to allow humans to produce viable trajectories
in simulation. We were successfully able to learn to perform
the stacking task in our simulation using force/torque control,
when the simulator is run at about half of real-time speed. We
then investigate multiple methods for automatically discovering
and learning this behavior, including black-box optimization,
reinforcement learning, imitation learning, and planning. We
finally propose a novel variant of imitation learning for control
which is able to solve the task somewhat successfully.

I. INTRODUCTION

Dice stacking, in the humble words of Wikipedia, is a
performance art, akin to juggling or sleight-of-hand, in which
the performer scoops dice off a flat surface with a cup and then
sets it down such that it stacks the dice into a vertical column.
One very clear visual example of this task is available on
YouTube [14]. We selected this as an interesting manipulation
task that expert humans are able to successfully perform. We
found no previously published research on this topic, and
decided to investigate this task via the use of a physics simulator
instead of a completely theoretical analysis. As the task requires
constant motion, possibly complicated inter-object behavior,
and varying friction coefficients, a simulator is a good starting
point to study this problem.

All of our code, and many of our successfully recorded runs
are available at http://placholder

II. RELATED WORK

There exist many simulation environments for robotic tasks.
They range from general purpose physics simulators such as
MuJoCo [31] and Bullet [7], to task-specific simulators such as
GraspIt [22]. There is also a middle-ground of fairly general,
robotics focused simulator environments such Drake [30] and
Gazebo [16]. Others exist to focus on a specific technical
approach to robotics, such as OpenAI’s Gym [3], which phrases
all robot learning tasks as reinforcement learn problems. Each
of these simulation environments comes packaged with many
example tasks. However, we found many of these examples
were fairly simplistic and unable to serve as sufficiently so-
phisticated test environments for research into highly dynamic
tasks.

In this case, we propose a specific new task, that of dice-
stacking. Our motivation in this task is to develop a problem
domain which is simple yet highly dynamic. In this case, we
mean dynamic in the sense of velocities being highly important
to the successful completion of the task. We believe this is
an important area of research, as even some of the most
sophisticated research in model-free robotics tends to focus
on tasks that are effectively static. For example, in [20],
many of the tasks focus on positioning challenge. The scope
of dynamic tasks is limited to those solvable with center-of-
mass planning [9]. While more recent work has focused on
dexterous manipulation [24], these tasks tend to be much higher
dimensional and still rarely have non-zero velocity for most
objects. We propose dice stacking as a challenging task where
objects only have non-zero velocity at the start and end of
the simulation. This task is both simply and highly dynamic,
making it an interesting new problem to tackle in manipulation
research.

We should note that older work exists in some highly
dynamic tasks, such as juggling. However, while there was
much initial work in juggling controllers [1], it was later shown
that that juggling is solvable with clever open-loop control
alone [27]. We hope that dice stacking is somewhat more
challenging task, despite being fairly similiar in number of
moving parts.

III. SIMULATION

To investigate the problem of dice stacking, we built a
2D dice stacking simulation from scratch in Python. Some
example screenshots from this 2D simulation are shown in Fig.
1. Representing the simulation in this way provides multiple
benefits. The first benefit is that it is an inherently simpler,
and only requires a 2D physics simulator framework. It is also
easier to introduce a simple control scheme for a user to control
the cup, and stacking the dice actually becomes much more
achievable (with a bit of practice) than it might otherwise be
in the real 3D world. We describe our design of user control
schemes in Sec. III-A. Our concept of what it means to be
successful in this task is described in Sec. III-C.

Our physics simulator of choice was Chipmunk 7 [19],
through its Python interface Pymunk. Chipmunk implements a
temporally coherent iterated impulse solver [5], which provides
very fast simulation of a physical environment. The solver
provides a simulation of real-world dynamics by iteratively
applying changes in velocity (force over time is an impulse,
and it produces a change in velocity). Any intersection between

http://placholder


Fig. 1. A visual example of our 2D dice stacking simulation, successfully completing our designed task of taking dice laying flat on a table and stacking them
on top of each other using a cup. Videos of our simulation are including with the submission but can also be seen on YouTube [14]

bodes is computed with GJK [10] and corrected. Finding the
minimum number of simulations to run, while avoiding object
interpenetration, required a small amount of tuning. For each
timestep, we ran 5 simulation steps, with 10 solver iterations
per simulation step. The use of an iterated impulse solver means
that our physics simulation is not strictly deterministic, and may
produce different simulation results on different runs due to
how collision constraints are handled. This informed the design
of many of our algorithms in Sec. V. Ultimately the benefit of
this simulator is that is both sufficiently realistic and extremely
fast (in our testing, we can do 40 simulations per second on
the single core of a 2017 Macbook Pro. Each simulation here
was 100 timesteps, which, as seen in Fig. 2, is long enough to
solve the task).

The shapes in our simulation are all composed of simple
convex primitives. The cup consists of three segments (a base
and two walls) and has a slight outward tilt towards the cup
opening. The dice are not squares, but instead octagons that
resemble squares but have a slight lip to model the shape of
real dice. The entire simulation has enclosing walls to keep
everything in a contained environment.

We also performed significant tuning of our physics simula-
tion settings. In the end we settled on the following constants
for the physics simulation:

gravity = −4.0m/s2 (1)
µdice = 0.6 (2)
µtable = 1.0 (3)
µcup = 0.4 (4)
mdice = 10g (5)

These settings were tuned based on some understanding of
friction of real bodies and tuning to make the experience
intuitive yet challenging for a player. For example, the cup
has the lowest coefficient of friction, followed by the dice,
and lastly the walls and floor surface. This is based on our
assumption of smooth slippery dice and something like a
smooth glass cup. Lowering gravity allows us to play the
simulation in slow motion, and we picked a factor of about
40% of real-time speed. We found that the friction between
the cup and dice needed to be low enough such that the dice
would slide rather than roll down a tilted cup wall, as would be
the case in the real world. Also, the friction between two dice
needed to be tuned such that they would not become jammed

in a non-stacked position within the cup. However, lowering
the friction too much of either the cup or dice made it difficult
to pick up the dice with the cup at all. The mass of the dice
is based on a standard 22mm die which has a typical mass of
around 10 grams. The frictional coefficients are the same for
both static and moving friction, as Pymunk did not allow us
to specify separate values. While these values were not based
on any measured values, their behavior seemed realistic and
allowed for users to sucessfully complete the stacking task with
our control scheme.

A. Design of control interface for users

To generate valid solutions or example trajectories for this
task, we developed many forms of user input. Primarily, we
focused on methods which producing velocity changes, as a
force/torque controller is an operation standard in physical
robotic manipulators [15]. We tried many different forms of
control schemes before settling on one that allowed for us to
easily control the game. For example, we initially implemented
gravity compensation for the cup but found that it made it
harder to control the system. We finally settled on a control
scheme where holding a key up/down/left/right for a
timestep applies a fixed force in that direction. This is a form
of force control. Likewise for the q/e keys and rotating the
cup clockwise or counter-clockwise, where we apply a torque
at the center of mass. When the user releases a key direction
(either vertical, horizontal, or angular), we apply a corrective
force to stop the cup in that dimension. This allows for the
cup to behave predictably, otherwise we’d often find the cup
moving even when the user released the keys.

In the final variation, the user may control the cup in various
ways. The arrow keys provide up-down-left-right movement of
the cup, with directions always defined in the global frame of
reference. To instead enable orientation control via the mouse,
the user can press m. When mouse control is active, the cup
will always face the mouse pointer. The starting state of the
simulation consists of the 3 dice laying flat (not stacked). The
goal state is to have the 3 dice stacked.

B. Unrealistic Solutions

We first explored some methods of achieving the goal state
in our simulation which do not reflect how the solution is
normally achieved in the real world. Examples of these possible
but unrealistic solutions are shown in Fig. 3 and Fig. 4.
These generally involve using the vertical walls included in
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Fig. 2. The state of the simulation during a successful run (see Section III-C). The top row shows the position of the cup, and you can see our characteristic
left-to-right swinging motion. The second and third rows show the positions of the dice, and we can see that the swinging motion allows the dice to stack on
top of each other after the second swing. The last two rows show the angles and velocities of the cup, demonstrating what our force-control actions are actually
doing to cup (force being proportional to acceleration, which produces a change in velocity). The entirety of this run corresponds to about two seconds of
real-time.

Fig. 3. Example of unrealistic stacking solution. The cup starts in the initial
state (left) and rotates to fling the dice at the vertical wall where they settle in
a stack. This is unrealistic because not only is it unlikely to happen in the real
world, but it is also against the rules to use a vertical wall to aid stacking.

Fig. 4. Example of unrealistic stacking solution. The cup starts in the initial
state (left), rotates to fling the dice at the vertical wall, and then hits the dice
to cause them to settle in a stack.

the simulation. These are unrealistic and not very much in
the original spirit of the game, as real-life dice stacking does

not include the use of any vertical walls. Some other similarly
unrealistic methods could be devised, such as scooping motions
or flinging motions. We wanted to explore these possible but
unrealistic ways of stacking in order to understand better the
full suite of manipulations possible with the cup, and also to
understand what might happen when we start trying to train a
computer to accomplish the stacking task.

C. Realistic Solution

A more realistic solution is shown in Fig. 1 and in the
accompanying video. This solution obeys the original rules of
challenge. Specifically, neither the cup nor dice make contact
with the vertical walls. The cup is moved in the same sort of
smooth, back-and-forth motion that we see in the slow motion
video. The dice are picked up by the cup via the cup sliding
along the table toward the dice at an angle which knocks
the dice upward, while the cup rotates in order to catch the
dice as they fly. The cup is moved left and right, all while
maintaining an orientation pointing toward the center-bottom
of the game screen (where the mouse pointer is located). Using
this technique, the dice eventually become stacked within the
cup as the cup is moved left and right. Finally, we can slow
down the cup motion gradually, and stop the cup when it is



approximately vertical. The dice drop down, stacked. We plot
some parameters of the game state during this realistic solution,
such as cup position and velocity, in Fig. 2.

D. How does our simulation compare to the real world?

We can compare our two dimensional simulation with a slow-
motion capture of what occurs in real-world three-dimensional
dice stacking. We found a good example at [11]. We find that
the basic behavior of our simulation and the real-world user
is very similar. The user uses the cup’s velocity to knock the
dice up and into the cup. Then a series of left-right motions
allow the dice to be knocked into the top of the cup. If the
cup is kept nearly vertical, the dice will largely stack in one
of the two corners in a vertical fashion. Afterwards, with a
small amount of finesse, the user slowly stops the cup and lets
the dice slide down the the cups interior and onto the table,
remaining vertical. This type of behavior is seen in both the
2D simulation and the real-world stacking video.

However, there is at least one limitation to our two dimen-
sional simulation. In the video referenced above, the real-world
player is able to pick up dice on each left/right action by
rotating their wrist and changing which corner of the cup the
dice are being stacked in. This rotational action is not possible
in our two-dimensional simulation, and if we were to pick up
dice one-by-one, we would require consistently using a left-to-
right or right-to-left action to knock the dice into our cup.

IV. PRODUCING VIABLE TRAJECTORIES

We initially did not have a sufficiently good user control
scheme, nor the experience, to perform dice stacking success-
fully in simulation. We thus attempted a few strategies of
solving this task without knowing how to do it ourselves; these
attempts are outlined in Sec. V. After these methods failed to
provide us desirable solutions and we also got good at playing
the game, we tried imitation learning techniques to play the
game successfully; these results are in Sec. VI.

V. AUTOMATIC STRATEGIES, WITHOUT GUIDANCE

A. State space

To use algorithms to automatically learn the dice stacking
task, we required a suitable state space within which to op-
erate. We chose to define a 24-dimensional state space which
includes:

• Position and angle for the cup (3)
• Linear and angular velocity for the cup (3)
• Position and angle for 3 dice (9)
• Linear and angular velocity for 3 dice (9)
We allow the same 3 dimensional input to the simulation

as the user is allowed. That is, an algorithm may apply force
control to change the cup position and angle. While the user’s
choice of forces is binary (either they are applying a fixed-sized
force or not), the computational methods predict a real-valued
force, up to the order of magnitude of the user input forces.
Additionally, we don’t include “stopping” mechanic that human
players get, see Sec. III-A.

B. Optimization

Our initial formulation of the problem was simply to con-
struct a function to perform the task, return a result fidelity,
and optimize the input with a black-box optimizer. The input
control was parameterized as x ∈ Rn×3, with n timesteps
of input, and a linear and angular force to apply at each
timestep. We treated all dimensions as largely existing in the
unit hypercube of xij ∈ [−1,+1], where we applied per-
dimensional scaling afterwards. We had scaling of 100, 10, 0.5
in the x, y, θ dimensions respectively. This is because, as seen
in Fig. 2 we largely use horizontal motion, with little vertical
motion. We did runs of 30 timesteps with gravity at 3.0x the
settings in Eq. 1 (and respectively up-scaled force limits). This
was to simulate the behavior of a user, where they might only
be able to change their input 10 times per second, or roughly
every 3 time-steps. This gave us a 90-dimensional optimization
problem.

Our simulation used the L2 variant of Eq. 9 as our distance
function d( #»x , #»y ) as it’s distance function between states. We
implemented two ways to stabilize this optimization. The first
technique was the use of multiple evaluations for every single
function evaluation to handle our non-deterministic physics
simulator. Without this, the optimizer would often find minima
that would actually be worse than the initial conditions upon re-
running them. The second was the use a variant of discounted
rewards. Our total error can be written as

Cost =
N∑
i=1

T∑
j=1

γT−jd(
#                                          »

f(xj |xj−1, . . . , x0),
#»y ) (6)

This is done over N samples, with xj ∈ R3, #»y as the goal
state, d( #»x , #»y ) as described above, f(x) returning simulator
state (as described in Sec. V-A) and discount factor γ ∈ [0, 1].
The discount factor allows us to penalize all states, with larger
weights on the final states. If we wish to only penalize the
last state, we can set γ = 0; if we wish to penalize all states
equally, we can set γ = 1. In our experience a setting between
0.1 and 0.5 is best, as it allows for smooth optimization and a
focus on the final states.

We experimented with multiple black-box optimizers, and
rank them by our subjective experience of using them below.

1) CMA-ES [12] was the best, and often generated solutions
where it would flip the cup sideways, launching the dice
such that the final state of the simulation often had them
nearly in the right position (see Fig. 5). However, none of
these input sequences were ever stable. Compared to the
other solvers, we believe that CMA’s iterative re-fitting
algorithm led to good handling of the many-timestamp
issues, and its logarithmic dependence on optimization
dimension meant that it ran rather quickly.

2) Differential Evolution [28] sometimes produces results
that looked like the CMA-ES results, but often simply
shook the cup side to side. We believe this is because
our sampling strategy kept track of the best result so far,
and hence was affected by an unusually good sample



being in the batch, even if was an unstable result where
the dice happened to bounce just right.

3) Bayesian Optimization [2] only ran for a few dozen
time-steps before the cost of running the optimizer began
to dominate the per-iteration compute time. For results
with only a few function evaluations, it produced good
objective values but we never ran it as long as the
aforementioned solvers, which happily handled thousands
of simulations.

4) Basin-Hopping with L-BFGS [4, 34] performed very
poorly. The basin hopping would often sample a random
configuration and the local optimizer would do something
unexpected due to the stochastic cost function. The new
random samples were sometimes good, but the local
optimization step produced no benefits.

Fig. 5. Example of an optimizer-based input sequence, flipping the cup such
that the final state closely resembles the goal state for the dice. See Sec. V-B.

C. Reinforcement Learning
Using the same cost function as in Sec. V-B, we also

implemented a reinforcement learning strategy. Since this for-
mulation was aware of different states and actions, we thought it
would be more stable than simply using a black-box optimizer.
We implemented a policy gradient method, namely REIN-
FORCE [35], from scratch. We used a per-timestep exponential
moving average baseline with an α = 0.99 and the following
update equation

bt = (1− α)bt + αGt (7)

We additionally used discounted rewards [29] such that

Gt =

T∑
t′≥t

γt
′−trt (8)

where, in our case, rt = −d( #»x , #»y ). We implemented our
function approximator as a three layer neural network, with
hidden size 32, a discount factor of 0.99, and LeakyReLU
activations (α = 0.05) [36], and Gaussian Noise [29] to handle
the case of exploration in a regression environment (σ = 0.3).
We used a tanh function to produced the same xi = [−1,+1]
values for force-control of the cup as in Sec. V-B.

We spent a few hours trying to tune the settings and make
the algorithm balance exploration, smooth convergence, but we
never got anything better than a random strategy that shook
the cup and knocked the dice around. While this may be a
more promising technique with additional run-time (our longest
training run was around 10 minutes or 5000 training steps), in
our experiments this was never able to produce a useful policy.

D. Rapidly Exploring Random Trees

Additionally, We implemented a planning-based solution to
this problem. We implemented our own variant of single-
directional, non-connected RRT [17, 18]. Our specific con-
tribution in this case was, every time RRT sampled a new
target state, we ran an optimization function (Sec. V-B) to
produce actions for a few time-steps, trying to perform the
desired state-to-state transition. Then we added the result of
the final optimized section of actions and the state transition
that it produced into our RRT tree.

However, we found that it took several hundred iterations
before we found any iterations closer to the goal state than the
initial state. Thus, we never found a good plan from the initial
to the goal state. We suspect that this is due to our very high
dimensional state space (Sec. V-A) and uniform sampling in
said state-space being incredibly inefficient.

VI. AUTOMATIC STRATEGIES, WITH GUIDANCE

We each practiced executing the realistic solution until we
were good enough to stack the dice successfully approximately
1 in 10 times. This took several thousand attempts, and we
recorded about 100 successful runs in our equivalent of bag
files. We wanted to become good enough at executing the
stacking so that our solutions could provide supervised training
data to an imitation learning algorithm. Our attempts at teaching
a computer to stack dice with our simulator are described in
the next sections.

A. Playback Imitation

The most straightforward method of using our successful
games is to simply play back the control input of a successful
user trial. However, we found this strategy was not entirely
successful, not only because it couldn’t handle things like
placing the dice in different positions, but also because our
simulator is non-deterministic (Sec. III). We tried playing back
a few of our runs, and while one of the authors often generated
runs that played back successfully, the other author was unable
to get any of their runs to play back correctly.

In order to create a more generalized policy, we decided
to learn a classifier to predict our actions based on a large
family of successful behaviors. This can be seen as supervised
learning for imitation learning, or a variant of DAgger [26] with
βi = 0 ∀i.

B. Choice of Regression Class

We attempt to train various regressors in a supervised setting,
in order to learn the dice stacking task. The input to the
regressor is the 24-dimensional game state, and they must
predict the 3-dimensional force control output at each time step
consisting of the linear and angular forces to apply to the cup.
We experiment with using Support Vector Regression (SVR)
with Radial Basis Function (RBF), a Multi-Layer Perceptron
(MLP), a Random Forest regression, a stochastic gradient
descent linear SVR implementation [25], and the gradient-
boosted trees [6]. We use sklearn [23] and XGBoost [6] for
regression implementations.



To generate training data for the regressors, we played
the simulation successfully almost 70 times using the so-
lution method described in Section III-C. We recorded the
24-dimensional state, and our 3-dimensional velocity control
inputs, for each success. We fit each of the regressor types to
this data, and then handed control of the simulation over to the
regressor to observe the result. The results for training error,
testing error, and a qualitative description of performance are
shown in Table I. For training and testing error, we report a
variant of Mahalanobis distance [21]. Specifically, we use a
diagonal covariance and L1 norm:

d( #»x , #»y ) =
1

N

N∑
i=1

3∑
j=1

∣∣∣ #»x
(i)
j − #»y

(i)
j

∣∣∣
σ
(i)
j

(9)

For N examples in the dataset, dataset labels #»x , regressor
predictions #»y , and σ the standard deviations from the training
dataset. One interesting finding for the regressors is that they
seem to benefit from an extra force input from the user in the
initial state, pushing the cup either left or right. Without this
initial push, most regressors have a tendency to remain still or
do only small motions. We include videos of RBF SVR, and
gradient-boosted trees in our video. In each of the videos, at
the beginning of a simulation run, we input an extra push to the
left which jump-starts the regressor to begin the characteristic
swinging motion. Unfortunately, none of our regressors were
able to fully complete the goal, although some came close.

In general, we found that the tree-based regressors had the
best performance in terms of training and testing error. We
hypothesize that this is true because of the very high correlation
between the features (the 24-dimensional state space) e.g. the
position and velocity of the dice and cup are highly inter-
dependent. Tree-based methods are often the best in problems
with this type of feature overlap. The parameterized methods
struggle to achieve good numerical results, most likely due to it
being difficult to generalize to a distribution over the relatively
small number of training examples (about 70). We do however
see an expected result, that RBF SVR performs better than
linear SVR, due to nonlinear interactions between state vector
and control input.

C. Design of Regression Function

When determining hyperparameters for our regressors, we
focused on finding parameters which seemed to best avoid
over-fitting while also providing low training error. For RBF
SVR we use C = 1.0. For the MLP, we use 5 hidden layers
with 16 neurons each and ReLU between each layer. We use
the Adam solver and train for 100 iterations. For the Random
Forest, we used 8 trees with a maximum depth of 12. For the
linear SGD SVR, we use epsilon-insensitive loss which ignores
errors below ε = 1e−3 and is linear past that, the same loss used
by RBF SVR. We limit SGD to 2000 iterations. For gradient
boosted trees (XGBoost), we use 100 trees with max tree depth
of 12.

Type Train
Error

Test
Error

Qualitative
Performance

Example

Linear SVR 0.79 0.86 Poor No dice in cup
MLP 0.63 0.76 Poor No dice in cup
RBF SVR 0.49 0.61 Okay 3 dice in cup
Rand. Forest 0.28 0.49 Poor 2 dice in cup
XGBoost 0.13 0.17 Very Poor No dice in cup
Linear SVR
w/ DaD [33]

– – Poor No dice in cup

k-NN
w/ DaD
(Sections
VI-E
& VI-E2)

– – Okay 3 dice in cup

TABLE I
REGRESSOR PERFORMANCE FOR DICE STACKING. NONE OF THE

REGRESSORS ACCOMPLISHED THE FINAL GOAL OF STACKING THE DICE,
AND IN FACT, THEY HAD VARYING LEVELS OF SUCCESS EVEN BEING ABLE

TO GET DICE INTO THE CUP. AN INTERESTING RESULT IS THAT
GRADIENT-BOOSTED TREES (XGBOOST) ACHIEVES THE LOWEST
TRAINING AND TESTING ERROR BY FAR, BUT ONE OF THE WORST

QUALITATIVE PERFORMANCES. THE BEST QUALITATIVE PERFORMER IS
RBF SVR, WHICH WE FOUND WAS ABLE TO REPLICATE THE SMOOTH,

SWINGING LEFT-AND-RIGHT MOTION CHARACTERISTIC OF HUMAN
SOLUTIONS. SEE OUR VIDEOS OF RBF SVR AND GRADIENT-BOOSTED

TREES IN OUR ACCOMPANYING VIDEO.

D. Supervision with DAgger

While we’ve implemented many supervised learning ap-
proaches to imitation learning, we’d like to augment our solver
with DAgger [26]. DAgger allows for experts to correct the
classifier over time, fixing the types of errors that the classifier
tends to make. However, while we’ve implemented the tech-
nical code path for this approach, our own inability to play
the game with a 100% success rate means that our initial few
runs of DAgger simply learned bad behavior. This would be
correctable by getting better at the game and developing editing
tools that would allow us to generate better trajectories in non-
real-time.

E. Supervision with DaD

Additionally, we implemented a novel variant of DaD [33,
32], where we learn how to correct the classifier trajectories.
This method is unlike the previously published variant for
control, where a linear dynamics model was learned and then
solved with an optimal linear controller [32]. Instead, we
propose a variant of DaD similar to our modified version of
RRT in section V-D, where an optimizer is used to learn
corrective actions from unusual trajectories. To do this, we
first start with a parametric policy as developed in section VI.
Then, we automatically increase our dataset. This is done by
performing

X = X ∪D (10)

where X is initialized with our initial imitation learning dataset.
The set of labels D is generated by running the policy as in sec-
tion VI-A, and then using an optimizer (Sec. V-B) to generate
examples that correct for mistakes in the classifier trajectory.
During each iteration, we generated a new augmented dataset



using

Di = argmin
xn

||f(xn|xn1
· · ·x0)− τn||22 ∀N ≥ n ≥ 1 (11)

Where xn is an applied force at time-step n, f(x) is our
simulator and τn is our recorded trajectory. This can be in-
terpreted as learning (via optimization) a correction that allows
each of our recordings to play back corrected (via a learned
policy). This formulation allows for the use of any arbitrary
function approximator, even a nonlinear one. In theory, if we
were to use an arbitrary function approximator and used a
sufficiently powerful optimizer, this would allow for automatic
correction of any trajectory artifacts seen in using a classifier-
based regression function. This can also be seen as a form
of automatic data augmentation [13] in a controls setting. In
practice, we used 10 windows of increasing size and perform
3 iterations for each window, similar to the time window
annealing process used in DaD [32].

1) Parametric DaD: As this method requires a fast classifier,
our only parametric experiments were run with The MLP
and Linear SVR methods. Unfortunately, even after running
this method for an hour, our performance hadn’t improved. It
is unclear if our choice of function approximator was poor
and lacked the ability to learn a sophisticated policy, or if
our optimizer returned corrections that we insufficient in the
computational time available.

2) Nonparametric DaD: Our final experiment, we tested
to see if model capacity was the problem with our previous
section and changed our classifier to a k-Nearest Neighbors
model [8]. We used k = 3 and repeated our proposed method.
We started with three very different imitation examples and
learned a nearest neighbor classifier to imitate this behavior. In
practice, this classifier has a slight mismatch in velocities/times
and is unable to perform the task correctly, similar to our results
in Section.VI-A. To perform DaD, we run this model over
our imitation examples and generate more data by learning
corrections by solving equation 11. In this case, our optimizer
is CMA-ES run and it is run for 50 iterations. The resulting
process learns to perform a shaking and stacking operation that
left all three dice in a tower, as shown in figure 6. However,
this technique did not work perfectly and resulted in the use of
a wall to accomplish this task.

Fig. 6. Example of our nonparametric DaD result. See Sec. VI-E2

VII. CONCLUSION

We present, to the best of our knowledge, the technical
analysis of this interesting manipulation task, dice stacking.
These include a dice stacking simulation built using a realistic
physics simulator. The simulation is open-source and user-
playable, and we describe how we tuned the physics and

designed a control scheme to allow a player to intuitively
stack dice. We describe experiments involving a variety of
supervised and unsupervised methods for teaching a computer
to perform dice stacking using our simulation. These include
a novel variant of using Data-As-Demonstrator (DaD) for a
control task, which is able to provide adequate performance
when given a dataset of imitation examples.

VIII. FUTURE WORK

To extend these results to better match the physical simu-
lations [14] we’re trying to resemble, much more work can
be done. For example, we could develop more robust policies
which would handle random initial dice and/or cup configu-
rations and still achieve the goal state. Additionally, while we
currently apply forces directly to the cup, it would be interesting
to instead hook the arm up to a force-controlled robotic arm. In
two dimensions we could use a 3 link (4 degrees-of-freedom)
arm with a cup as an end effector. Lastly, we could extend the
simulation to be a full three dimensional simulation by moving
to Bullet [7] instead of Chipmunk [19]; all of the techniques
proposed in this paper are general enough to also handle the
higher dimensional case.
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