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<Demo>

• Run on my IT-issued laptop
• i5-4300U @ 1.90 GHz

• This is the machine used for any demos/timings in talk

• Algorithm code is all single-core C++ CPU code
• By choice



Technical Reference Materials

• Physics Engine

• https://github.com/melax/sandbox
• Stan Melax’s sandbox for physics + graphics code, BSD license
• Sequential Iterative Impulse solver, © 1998-2008 

• Our tracking built on top of improved/expanded version

• Intel’s 2013 release of this work, free download
• https://software.intel.com/en-us/articles/the-intel-skeletal-hand-tracking-library-experimental-release
• Camera input layer is sample code, you could re-purpose on top of whatever data you’d like

• Demo Videos & Concepts
• https://www.youtube.com/user/smelax

https://github.com/melax/sandbox
https://software.intel.com/en-us/articles/the-intel-skeletal-hand-tracking-library-experimental-release
https://www.youtube.com/user/smelax


Academic Reference Material

• Melax, Keselman, Orsten. 
• Dynamics based 3D skeletal hand tracking.

• i3D 2013. Poster

• GI 2013, Full-length paper



Talk Overview

1. Motivation
2. Dynamics-Based Tracking

a) Background
b) Method overview
c) Hand Model

3. Fast iterative Tracking
a) Our tracking architecture
b) Benefits of being 3D
c) Multi-hypothesis architecture
d) Value of working in a constraint-

based solver

4. Cameras and Usages
a) Basic Filter Architecture
b) Structured Light: PrimeSense & 

Kinect v1 
c) Time-of-Flight: SoftKinetic
d) Projected Texture Stereo: Intel 

R200
e) Structured Light: Intel F200

5. Annotation, Learning and 
Classification

6. Q&A



Background



Background

• Intel interested in depth cameras
• Started in ~2011
• Most of our work was during 2012

• January 2013: “Senz 3D”
• QVGA, TOF depth camera
• CES 2013 Launch

• Present Day: Intel RealSense
• F200 & R200



Background

• Intel has 2 depth sensors 
available as developer kits

• http://click.intel.com/realsense.html

• F200
• Structured Light

• R200
• Projected Texture Stereo

http://click.intel.com/realsense.html


2011: Real-time “Hand Tracking” from 3D cameras



3D Hand Tracking Goal

• Full 6 DOF pose for all finger bodies
• Along with sufficient information to provide collisions and interactions
• On consumer hardware

• Existing work on providing such 3D pose
• Wang, Popovic. Real-time hand-tracking with a color glove.  ‘09.  + 6D Hands Pose Template
• Hilliges et al.  Digits:  freehand 3D interactions anywhere using a wrist-worn gloveless sensor UIST ‘12.
• Oikonomidis, Kyriazis, Argyros.  Efficient model-based 3D tracking of hand articulations using 

Kinect.  BMVC ‘11.



Motivation: Emergent Interaction

https://www.youtube.com/watch?v=sAcTshfZCU8


Dynamics-based Tracking



Rigid Body Dynamics

• Ability to physically 
simulate articulated 
models with collisions and 
joints.

• Achieved by satisfying 
linear and angular 
constraints.  
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• From Adam Finkelstien’s COS426 lecture notes:

Kinematics vs Dynamics



GJK 1988



Surface constraints
• Like little magnets that attract the surface



Surface constraints created from 
synthetically generated depth data

2nd instance (left), generates depth data (middle), tracking/fitting (right)



Model to track authored in 3DS max
•Created a generic hand and scale it as necessary:

20

Custom models could be made.



Combining constraints + hand mesh



Rigid Body Dynamics

• Picture from E. Coumans’ talk 
GDC14 on MLCP solvers
• http://goo.gl/84N71q

• Many methods
• Stable, Approximate
• Minimal tuning, temporally consistent
• Very, very fast 
• (30-1000Hz for modern games)

• We use a sequential impulse solver.
• Fast, stable, converges to global solution
• See reference slides for more details

http://goo.gl/84N71q


Rigid Body Dynamics: Easy to reason with

• The use of a single unified solver
• Collisions
• Angular limits
• Data to model minimization
• Approximation to real-world

• Solves an MLCP: an arbitrary set of 
angular and linear constraints

• Easy to express new information 
into the system
• Force fingertip to bend at expected 

relative angle?
• Just add a conical constraint! 

Unconstrained With bend angle constraint



Fast Iterative Tracking
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High Speed Iterative Tracking

Simplified Architecture view

This type of track + reinitialize architecture seems to be catching on
• CVPR 14: Qian et al, “Realtime and Robust Hand Tracking from Depth”
• CHI 15: Sharp et al, "Accurate, Robust, and Flexible Real-time Hand Tracking."



Try hypotheses and heuristics
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Multiple Simulations
• System can get stuck in local 

minimum

• Run multiple simulations and 
pick the best fit.

• Increase likelihood of regaining 
lost tracking

28
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Error Metric

• 𝐸𝑚𝑜𝑑𝑒𝑙 = α( 𝐸𝑑𝑎𝑡𝑎 ∞ + 𝐸𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔)

• L-inf norm for point cloud to rigid body surface
• We want the pose that best explains all points

• Additional penalty for bone centroid existing in front of background
• Single raycast per bone (17 total per frame)
• Can strengthen penalty to also penalize missing data for ToF cameras

• Non-standard simulations have a penalty multiplier

• Other metrics available, but generative + reprojection based metrics 
much more computationally expensive



Two Handed Interaction

• Simple Method
• K-Means Merging for Segmentation

• K = 2

• Explicitly seed leftmost & rightmost points

• Merge clusters if centroids are close

• Run two simulations for 2 hands

• Easy Extension
• Solve in single simulation

• Might require more careful 
correspondence



High speed motion tracking



Results
• Tracked hand model 

compared to input

35

Creative Gesture Camera Asus xtion



Voxel Subsampling
• Would be too expensive to use every depth 

sample. 

• High performance 
• 45-80 FPS on single core
• Flexible subsampling options
• Approximate hashing scheme

• Added benefit of removing outliers or 
“flying pixels”. 
• Configurable density check

• Improves fitting of tracking model.

• For noisy cameras, we also have a 
custom 16bit spatial median filter and 
a bilateral filter for photometric-
aligned data streams
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Solver Performance

• We’re processing roughly ~300-400 
volumetric contacts

• Overall, roughly ~5,000 to 6,500 
constraints solved per frame in 
multiple hypothesis solver architecture.  
• Multiple solvers, multiple passes

• This is roughly 50,000 constraint-
iterations (~10 iterations per step)

• Total system clock on my i5-4300U is 
about 6-7 milliseconds
• ~ 1uS/constraint 
• ~ 0.15uS/constraint-iteration.  

• In single hypothesis version, full pass of 
dense data fitting is ~800uS

• Includes everything after voxel 
subsample through solver completion, 
counting
• Closest surface finding
• Solving data constraints
• Solving self-collision constraints
• Evaluating all error metrics



Benefits of fast iterative tracking

• Fewer points run faster can be a lot more robust.
• Also computationally more efficient: Relative to velocity, 2D image search 

space is quadratic with resolution increases, but linear with time decreases. 

• If you run fast enough, all changes are small
• KinectFusion, Newcombe et al, 2011; Lucas & Kanade, 1981

• “Real-Time Camera Tracking: When is High Frame-Rate Best?”, Ankur Handa, 
Richard A. Newcombe, Adrien Angeli, and Andrew J. Davison, ECCV 2012
• Develops Pareto wavefront for tracking cameras given compute budget. Lower resolution 

with higher framerate performs better than higher resolution at lower frame-rate



Benefits of fast iterative tracking

• Feel free to throw out whatever data might be noisy
• Make system robust by being selective

• Can track in extremely sparse data environments
• passive stereo or in depth camera saturation conditions (only edge data)



Benefits of fast iterative tracking

• Robust tracking with 
minimal data
• Tracking under camera 

saturation conditions

• Temporal Coherence

• Top Right = Input Depth
• White = no data

• Gray = depth data

• Bottom Left = Estimated 
Hand Pose



Cameras and Usages



Pose Locking

• Trivial to force the solver to use reduced state spaces.

• Can be far more robust for tracking in constrained situations
1. Unibody: Internally used – solve system as a single rigid body  

2. Duobody: experimental – solve the system as 2 solid parts: arm and hand

3. Arbitrary joint locking



Pose Locking: Best-fit pose given only pointer 
finger and wrist as open rotational DOF



Combining tracking + simulation



Application – physical 3D interaction
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Dynamics 
Solver

Virtual
Hand

Tracked 
Hand 
Pose

Other 
Virtual 
Objects

Forward Dynamics
“Powered-Rag-Doll”

Pose from tracking
system drives 
a virtual hand
in the application.

Application Physics Scene

Drives



Jenga Case Study
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• Easy to knock things over, but Hard to grasp/stack blocks

• 3D displays helpful for judging distance. (eg zspace)

• Intent-assuming artificial systems can enhance interaction.  (extra 
magnetic pull/push.)

• SoftBody seems to work better than RigidBody (wet bar of soap vs 
sponge)

• But really too hard to play without force-feedback
• Interesting area of further work: how to combine tracking 

systems with force understanding and communication
• Tu-Hoa Pham, Abderrahmane Kheddar, Ammar Qammaz, Antonis A. Argyros; The 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2810-
2819



Applications to HMD applications

GPU vs CPU
• Please build CPU-side tracking

GPU has a ton of high-throughput numerical compute 
but it has two problems

1. Run to completion on tasks

2. VR+AR applications have high compute needs and 
you’re getting in the way
• VR is only viable at ~90Hz [Abrash 2014], which is

~ 11ms/frame
• Users expect visual fidelity, applications will use 

8-10ms/frame
• Budget of 1-3ms/frame if you’re using the GPU (e.g. 330 

to 1000Hz tracking)
• If you miss it, you’re toast: > 11ms often means 22ms, 

which is 45Hz visual updates and your users all get sick

Cascaded Hand Pose Regression, CVPR 15, Sun et al. 300Hz on CPU!



Annotation, Learning & 
Classification



Getting ground truth

• If you want validation data, or large data-sets for machine learning: use an 
iterative geometric tracker

• Failures occur but there’s three huge benefits:
1. Fast and easy
2. If you annotate a few corrections, you can propagate the corrections
3. Geometric trackers can handle multiview pose tracking

• Using multiple cameras, simply register them and feed the algorithm at once
• We simply minimize cloud -> pose error 

• SIGGRAPH 14: “Real-Time Continuous Pose Recovery of Human Hands 
Using Convolutional Networks” Jonathan Tompson, Murphy Stein, Yann 
Lecun, and Ken Perlin.





Training Label Generation
Left=Annotation, Right=Trained Classifier



Explicit a-prior polyhedral model
Pros

•Not solving unnecessarily high dimensional problem

•Easy to render, collide against

Cons

•Not as high-fidelity as a generic skinned mesh

•Doesn’t handle variation across users

52



Hand Variation Across Users

• We’ve found that most adult humans have very similar sized hands

• We’ve been using a simple to use 2-parameter resizing model
• Length
• Width/Thickness
• User-controlled

• CVPR 2015: Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin, 
Shahram Izadi, Andrew Fitzgibbon; “Learning an Efficient Model of Hand 
Shape Variation From Depth Images” 
• captures high level-of-detail variation, and also justifies using just 2 or 3 degree of 

freedom variation model of hand variation



Hand Variation Across Users
Internal work on naïve hand measurement work done in June 2012
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Automatic Hand Measurement: Overview

1. Detect blobs, in pre-determined orientation
2. Find points of interest on the contour
3. Feeding a 6 parameter model: finger lengths (5), palm Width
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Automatic Hand Measurement: Accuracy
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Automatic Hand Measurement: Multiple Subjects

• Results across a variety of users are within % of ruler measured values

1 2 3 4 5 6 7 8 9 10 AVERAGE

Mean ( |E| ) * 4.17% 1.19% 4.67% 2.84% 5.65% 2.43% 4.11% 5.40% 4.25% 2.12% 3.69%

Correlation 0.971 0.993 0.949 0.987 0.955 0.998 0.965 0.951 0.952 0.973 0.969

Measured results (10 users)
1 2 3 4 5 6 7 8 9 10

Pinky 68 64 54 62 68 61 64 54 68 62

Ring 84 78 70 76 78 74 83 64 81 71

Middle 92 80 78 84 87 84 86 70 82 82

Pointer 82 76 70 76 79 78 78 69 75 72

Thumb 68 70 65 65 65 62 68 64 66 68

Palm 90 85 75 83 85 94 98 78 87 88
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Automatic Hand Measurement: Multiple Subjects
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Automatic Hand Measurement: Applied to 
hand tracking

Mean σ
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After 0.048 0.021
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Q&A: Additional Interactions

https://www.youtube.com/watch?v=73wPAsk3Aeo


Physics Reference Works

Classical Works

• GJK, 1988

• Fast Contact Force Computation, 
Baraff, 1994

• Anitescu & Porta, 1996

• Impulse-based Dynamics 
Simulation, Mirtich & Canny, 
1994-1996 

Modern/Education Works
• Open Dynamics Engine, Russell Smith, 

2004

• Iterative Dynamics with Temporal 
Coherence, Erin Catto, 2005

• Modeling & Solving Constraints, Erin 
Catto, GDC 09

• Physics for game programmers, GDC 
2012

• Understanding Constraints, Erin Catto, 
GDC 2014

• Exploring MLCP solvers, Erwin Coumans, 
GDC 2014

http://www.ode.org/slides/parc/dynamics.pdf
http://www.bulletphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc09/slides/04-GDC09_Catto_Erin_Solver.pdf
http://box2d.org/files/GDC2014/GDC2014_ErinCatto.zip
http://goo.gl/84N71q

